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SUMMERY
In this paper, we consider a low-complexity method

of weighted subspace fitting (WSF) for direction-of-arrival
(DOA) estimation. With the properties of the multi-stage
wiener filter (MSWF), we derive a novel criterion function
for the WSF method without the estimate of an array covari-
ance matrix and its eigendecomposition. A new approach for
noise variance estimation is also proposed. Numerical results
indicate that by selecting a specific weighting matrix, the
low-complexity WSF estimator can provide the comparable
estimation performance with the conventional WSF method.

I. INTRODUCTION

Super-resolving correlated or even coherent signals is
the fundamental problem in array signal processing, which is
frequently encountered in many areas such as communication,
radar, sonar and geophysical seismology. The subspace based
methods, which resort to the decomposition of the observation
space into signal subspace and noise subspace, can provide
the outstanding estimation performance. In the literature, the
classical subspace based methods have been investigated ex-
tensively [1]-[2]. Nevertheless, the classical subspace based
methods involve the estimate of an array covariance matrix and
its eigenvalue decomposition (EVD), which is rather computa-
tionally intensive for the case where the model orders in these
matrices are large. To reduce the computational complexity
of the classical subspace based methods, a number of low-
complexity methods without eigendecomposition have been
proposed in [3]-[4]. Normally, the existing linear operation
based methods with low complexity [3]-[6] find the signal
or noise subspace by a partition of array response matrix
or exploiting the array geometry and its shift invariance
property [6], and then estimate the directions of arrival (DOAs)
of signals by the way similar to the classical MUSIC estimator.
However, it is shown in [6] that the accuracy of the linear
operation based methods [3]-[5] is generally poorer than that
of the classical subspace-based methods. On the other hand,
for highly correlated or even coherent incident signals, the
SUMEW method presented in [6] still relies on the averaging
techniques. Although the weighted subspace fitting method
without eigendecomposition (WSF-E) [7] is capable of re-
solving the coherent signals, it still needs the estimate of the

array covariance matrix and complex matrix-matrix products
to derive the criterion function, thereby indicating that the
WSF-E method is still computationally prohibitive

Recently, the methods termed ROCK MUSIC [8] and
ROCKET algorithm [9] based on the MSWF developed by
Goldstein et al [10] were proposed to high-resolution spec-
tral estimation. Nevertheless, the ROCK MUSIC technique
requires the forward and backward recursions of the MSWF,
which increase the complexity of the algorithm. Moreover,
the ROCKET algorithm still needs complex matrix-matrix
products to find the reduced-rank data matrix and the reduced-
rank autoregressive (AR) weight vector. This implies that
additionally computational burden is included.

In this paper, we consider a low-complexity method of
weighted subspace fitting (WSF) for DOA estimation. With
the assumption that the training data of one desired signal
are well known, the novel method is developed. Firstly, a
new criterion function is derived based on the MSWF. The
novel signal subspace is obtained by the forward recursion
of the MSWF, which merely involves complex matrix-vector
products. And then, the DOA parameters can be readily
extracted by minimizing the novel criterion function. As
a results, the new estimator has the attractive advantages.
First, it does not require the estimate of the array covariance
matrix, its eigendecomposition or the backward recursion of
the MSWF. Furthermore, all operations included are merely
complex matrix-vector products, thereby requiring much lower
computational cost than the existing subspace based methods
for direction estimation. Second, all the DOA parameters of
the desired signal (with the knowledge of training data) and
the ”interference” signals (without the knowledge of training
data) can be efficiently estimated. Simulation results imply that
the proposed estimator can provide the comparable estimation
accuracy with the classical WSF method.

II. PROBLEM FORMULATION

A. Data Model

Let us consider P narrow-band signals from distinct
directions {θ1, θ2, · · · , θP } impinging upon a uniform linear
array (ULA) composed of M isotropic elements. The M × 1
received noisy array data at the kth snapshot can be described
by the following model

x(k) =
P∑
i=1

a(θi)si(k) + n(k) k = 0, 1, · · · , N − 1(1)
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where si(k) is the scalar complex waveform referred to as
the ith signal, n(k) ∈ CM×1 is the additive noise vector, N
denotes the number of snapshots, P represents the number of
signals, and a(θi) is the steering vector of the array toward
direction θi that is measured relative to the normal of array,
and takes the following form

a(θi) =
1√
M

[
1, ejϕi , · · · , ej(M−1)ϕi

]T
(2)

where ϕi = 2πd
λ sin θi in which θi ∈ (−π/2, π/2), λ and d

are the wavelength of the carry signal and the inter-element
spacing measured in wave lengths, respectively, the superscript
(·)T denotes the transpose operator. Equation (1) can be
rewritten more compactly as

x(k) = A(θ)s(k) + n(k) k = 0, 1, · · · , N − 1 (3)

where

A(θ) = [a(θ1),a(θ2), · · · ,a(θP )] (4)

s(k) = [s1(k), s2(k), · · · , sP (k)]T (5)

are the M ×P steering matrix and the P × 1 complex signal
vector, respectively.

Throughout this paper we assume that M > P . Fur-
thermore, the background noise uncorrelated with signals is
modeled as a stationary, temporally white, zero-mean Gaussian
random process, which is also spatially white and circularly
symmetric with the second moments

E
[
n(k)nH(l)

]
= σ2

nδk,lIM and E
[
n(k)nT (l)

]
= 0 (6)

where δk,l is the Kronecker delta and IM denotes the M ×M
identity matrix. We also assume that all signals are jointly
stationary, temporally white, zero-mean complex Gaussian
random processes. Under these assumptions, the output of the
array is complex Gaussian with zero mean and the following
array covariance matrix

Rx = E
[
x(k)xH(k)

]
= A(θ)RsAH(θ) + σ2

nIM (7)

where σ2
n is the noise variance and Rs = E

[
s(k)sH(k)

]
is

the signal covariance matrix.

B. Classical Weighted Subspace Fitting

Performing the eigenvalue decomposition of the array
covariance matrix Rx leads to

Rx = VsΛsVH
s + VnΛnVH

n =
M∑
i=1

λivivHi (8)

where λ1 ≥ λ2 ≥ · · · ≥ λP ′+1 = · · · = λM = σ2n,
Vs = [v1,v2, · · · ,vP ′] and Vn = [vP ′+1,vP ′+2, · · · ,vM], and
P ′ denotes the number of uncorrelated signals. Accordingly,
the eigendecomposition of the sample covariance matrix R̂x =
1
N

∑N−1
k=0 x(k)xH(k) is given by

R̂x = V̂sΛ̂sV̂H
s + V̂nΛ̂nV̂H

n =
M∑
i=1

λ̂iv̂iv̂Hi (9)

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂P ′+1 ≈ · · · ≈ λ̂M ≈ σ2n, V̂s =
[̂v1, v̂2, · · · , v̂P ′] and V̂n = [̂vP ′+1, v̂P ′+2, · · · , v̂M]. The column
rank of Vs is in general equal to the rank P ′(P ′ ≤ P ) of the
signal covariance matrix Rs. Thus the columns of Vs span
the P ′-dimensional subspace of A(θ). Considering (7) and
(8) and performing some manipulations, we obtain

Vs = A(θ)T (10)

where T ∈ CP×P ′
is the full rank matrix. Equation (10)

forms a basis for the classical signal subspace fitting. θ and T
are unknown and can be acquired by solving (10). In fact, if
the theoretical Vs is replaced by the estimate V̂s, there will
be no accurate solution to the equation above. In this case,
one attempts to minimize some distance measure between V̂s

and A(θ)T. For this purpose, the Frobenius norm is often
used. Therefore, the SSF estimator is obtained by solving the
following non-linear optimization problem:

{θ̂, T̂} = arg min
θ,T

‖V̂s − A(θ)T‖2
F . (11)

Since the cost function above is quadratic with respect to
T, T̂ is easily obtained. Inserting the least squares solution
T̂ = [A(θ)HA(θ)]−1AH(θ)V̂s into (11) yields the following
equivalent optimization problem without the parameter T:

θ̂SSF = arg min
θ

{
tr
(
P⊥

AV̂sV̂H
s

)}
(12)

where P⊥
A = IM − A(θ)[A(θ)HA(θ)]−1AH(θ). Since the

eigenvectors are estimated with a quality, commensurate with
the closeness of the corresponding eigenvalues to the noise
variance, it is natural to weight each eigenvectors and lead to

θ̂WSF = arg min
θ

{
tr
(
P⊥

AV̂sWV̂H
s

)}
(13)

where W is the weighting matrix whose optimal solution [2]
is given by Wopt = (Λs − σ2

nI)
2Λ−1

s .

C. Multi-Stage Wiener Filter

The multi-stage wiener filter presented by Goldstein et al
is to find an approximate solution to the Wiener-Hopf equation
which does not need the inverse of the array covariance matrix.
The MSWF of rank D based on the data-level lattice structure
is given by the following set of recursions:

• Initialization: d0(k) = s1(k) and x0(k) = x(k).
• Forward Recursion: For i = 1, 2, · · · ,D:

hi = E[xi−1(k)d∗i−1(k)]/‖E[xi−1(k)d∗i−1(k)]‖2;
di(k) = hHi xi−1(k);
xi(k) = xi−1(k) − hidi(k).

• Backward Recursion: For i = D,D − 1, · · · , 1 with
εD(k) = dD(k):

wi = E[di−1(k)ε∗i (k)]/E[|εi(k)|2];
εi−1(k) = di−1(k) − w∗

i εi(k).
For the MSWF of rank M , the pre-filtering matrix TM =

[h1,h2, . . . ,hM ] is formed by M matched filters in the
forward recursion of the MSWF. To reduce the computational
load, the MSWF is truncated at the Dth stage and the reduced-
rank transformation matrix is TD = [h1,h2, . . . ,hD]. In this
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paper, we assume that D ≥ P ′. Notice that the orthogonal
matched filter hi ∈ CM , i = 1, 2, . . . ,M maximizes the
real part of the correlation between the new desired signal
di(k) = hHi xi−1(k) ∈ C at the ith stage and the desired signal
di−1(k) at the (i−1)th stage subject to ‖hi(k)‖ = 1, forcing
the desired signals between successive stages to be in-phase.
However, the blocking matrix Bi = I−hihHi guarantees that
TM decorrelates all lags in the process di(k) greater than one.
It follows that the pre-filtered covariance matrix is tridiagonal:

TH
MRx0TM =

[
TH
DRx0TD TH

DRx0Tn′

TH
n′Rx0TD TH

n′Rx0Tn′

]
(14)

=




σ2
d1

δ∗2
δ2 σ2

d2
δ∗3

δ3 σ2
d3

. . .
. . .

. . . δ∗M
δM σ2

dM




= D

where σ2
di

= E [di(k)d∗i (k)], δi = E
[
di(k)d∗i−1(k)

]
, Tn′ =

[hD+1,hD+1, · · · ,hM ], and TM = [TD,Tn′ ].

III. LOW-COMPLEXITY METHOD FOR WSF

A. Derivation of the Novel Criterion Function for WSF

It is easy to see from (14) that TH
DRx0TD is also a

tridiagonal matrix and can be expressed as

TH
DRx0TD = E

[
d(k)dH(k)

]
= Rd (15)

where

d(k) = TH
Dx0(k) = [d1(k), d2(k), · · · , dD(k)]T (16)

in which di(k) is calculated by the MSWF algorithm above.
For uncorrelated signals, performing the eigenvalue decompo-
sition of Rd leads to

TH
DRx0TD = EsΣsEHs + EnΣnEHn =

D∑
i=1

ηieieHi (17)

where {ηi, ei} , i ∈ {1, 2, · · · , P ′} are the largest eigenpairs of
Rd. Accordingly, the eigendecomposition of the estimate R̂d

is given by

T̂H
DR̂x0T̂D = ÊsΣ̂sÊHs + ÊnΣ̂nÊHn =

D∑
i=1

η̂iêiêHi (18)

where {η̂i, êi} , i ∈ {1, 2, · · · , P ′} are the largest eigenpairs of
R̂d. It is easy to see that the pre-filtered matrix TM and its
estimate T̂M are unitary.

Pre-multiplying and post-multiplying (17) with TD and
Es, respectively, and noting the projection matrix TDTH

D =
I − Tn′TH

n′ , we obtain

TDEsΣsEs
HEs + TDEnΣnEHn Es

= TDTHDRx0TDEs (19)

=
(
I−Tn′THn′

) [
A(θ)RsAH(θ)+σ2nI

]
TDEs

= A(θ)RsAH(θ)TDEs+σ2nTDEs−Tn′THn′Rx0TDEs.

It readily follows from (14) that

TH
n′Rx0TD =

[
01×(D−1) δD+1

0(M−D)×(D−1) 0(D−1)×1

]
. (20)

It is shown in [10] that xi(k) trends to become white as the
stage of the MSWF increases. As a matter of fact, if i ∈
{P ′, P ′ + 1, · · · ,M − 1}, xi(k) is a temporally white random
process.

Proposition 1: Suppose that there are P ′ uncorrelated sig-
nals impinging on the ULA, then when the rank of the MSWF
is equal to the number of signals, the process

x(P ′)
P ′ (k) =

(
I − hP ′hHP ′

)
x(P ′)
P ′−1(k) = BP ′x(P ′)

P ′−1(k) (21)

is a temporally white process, and takes the following form

x(P ′)
P ′ (k) =

(
1∏

i=P ′
Bi

)
n(k) (22)

where the superscript (·)(P ′) represents the case where the
number of incident signals equals P ′, the subscript (·)P ′ refers
to the P ′th stage of the MSWF.

The proof of Proposition 1 is seen in Appendix I.
Corollary 1: Suppose that there are P ′ uncorrelated signals

received by the ULA, then when the rank of the MSWF is
equal to or greater than the number of signals, the processes
xi(k) = Bixi−1(k), i ∈ {P ′, P ′ + 1, · · · ,M − 1} are
temporally white random processes.

Proof: It is easy to see that the process after the P ′th
stage of the MSWF has the following form

x(P ′)
i (k) = Bix

(P ′)
i−1 (k) = BiBi−1x

(P ′)
i−2 (k) = · · ·

=



P ′+1∏
j=i

Bj


x(P ′)

P ′ (k)

=



P ′+1∏
j=i

Bj







1∏
j=P ′

Bj


n(k) (23)

=




1∏
j=i

Bj


n(k)

where i = P ′+1, P ′ +2, · · · ,M−1. It follows from (22) and
(23) that the process x(P ′)

i (k), i ∈ {P ′, P ′ + 1, · · · ,M − 1}
is temporally white. Thus, we obtain the Corollary 1. For
simplicity, in what follows we assume that the number of
uncorrelated signals is P ′ and suppress the superscript (·)(P ′)

of the process x(P ′)
i (k), namely xi(k).

It follows from Corollary 1 that when i = {P ′, P ′ +
1, · · · ,M − 1}, we have

δi+1 = E [di+1(k)d∗i (k)]
= E

[
hHi+1xi(k)x

H
i−1(k)hi

]

= hHi+1E
[
xi(k)xHi−1(k)

]
hi

= hHi+1E

[(
1∏
t=i

Bt

)
n(k)

[(
1∏

s=i−1

Bs

)
A(θ)s(k)
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+

(
1∏

s=i−1

Bs

)
n(k)

]H
hi (24)

= hHi+1

(
1∏
t=i

Bt

)
E

[
n(k)n(k)H

]( 1∏
s=i−1

Bs

)H

hi

= σ2
nh

H
i+1

(
I −

i∑
t=1

hthHt

)(
I −

i−1∑
s=1

hshHs

)
hi

= 0.

Note that the orthogonal property of the matched filters hi is
used in (24). So TH

n′Rx0TD = 0, and (19) can be reduced to

TDEs

(
Σs − σ2

nI
)

= A(θ)RsAH(θ)TDEs, (25)

namely

TDEs = A(θ)RsAH(θ)TDEs

(
Σs − σ2

nI
)−1

. (26)

Let

U = TDE = TD [Es En]
= [TDEs TDEn] (27)

= [Us Un]

where Us = TDEs, Un = TDEn. Therefore, (26) can be
reexpressed as

Us = A(θ)K (28)

where K = RsAH(θ)TDEs

(
Σs − σ2

nI
)−1 ∈ CP×P ′

. It is
easy to see that K is of full rank. It follows that Us spans
the signal subspace. Thereby, the relation (28) creates a novel
basis for the SSF, and we have the following new criterion
function: {

θ̂, K̂
}

= arg min
θ,K

‖Ûs − A(θ)K‖2
F (29)

where Ûs is the estimate of Us. Similarly to (11), (29) is
also quadratic with respect to K. Thus, the parameter K can
be solved and replaced in the criterion function above. For
the fixed unknown parameter A(θ), the solution for the linear
parameter K is

K̂ = A† (θ) Ûs (30)

where A† (θ) =
[
AH (θ)A (θ)

]−1
AH (θ). Inserting (30) into

(29), we get the new criterion function for SSF without K:

θ̂ = arg min
θ

‖P⊥
AÛs‖2

F = arg min
θ

{
tr

(
P⊥

AÛsÛH
s

)}
.

(31)
By introducing a weighting for each signal vector estimate ûi,
i = 1, 2, · · · , P ′, we eventually obtain the following criterion
function for weighted subspace fitting:

θ̂WSF = arg min
θ,K

‖ÛsW̃1/2 − A(θ)K‖2
F

= arg min
θ

{
tr
(
P⊥

AÛsW̃ÛH
s

)}
(32)

where W̃ is the weighting matrix whose optimal
value is W̃opt =

(
Σs − σ2

nI
)2

Σ−1
s in which

Σs = diag {η1, η2, · · · , ηP ′}.
It is not difficult to show from Lemma 1 of [11] that η̂i

and ûi are the Rayleigh-Ritz (RR) values and RR vectors of
Krylov subspace K(D)(R̂x0 , r̂x0d0), which are asymptotically
equivalent to the eigenvalues and eigenvectors of Rx0 ,
respectively. It follows that the noise variance can be easily
estimated by

σ̂2
n =

1
M − P ′

M∑
i=P ′+1

λ̂i

=
1

M − P ′


tr(R̂x0) −

P ′∑
i=1

λ̂i


 (33)

=
1

M − P ′


tr(R̂x0) −

P ′∑
i=1

η̂i


 .

However, the array covariance matrix R̂x0 is unknown
yet. Computing its estimate will increase the computational
cost of the proposed method. In fact, the trace of R̂x0

can be computed by tr
(
R̂x0

)
= 1

N

∑M
i=1 xHi xi, where

xi = XT fi = [xi(0), xi(1), · · · , xi(N − 1)]T in which fi =
[0, · · · , 0, 1︸ ︷︷ ︸

i

, 0, · · · , 0]T and X ∈ CM×N . It is easy to see from

(33) that the array covariance matrix can avoid to be estimated
and the computational complexity of tr(R̂x0) is reduced from
O(M2N) to O(MN).

B. Computational Cost Requirement

It should be noted that the efficient implementation of
the MSWF based on the data-lever lattice structure avoids the
formation of blocking matrices, and all the operations of the
MSWF only involve complex matrix-vector products, thereby
requiring the computational complexity of O(MN) flops for
each matched filter hi, i ∈ {1, 2, · · · ,D}. To fulfil the design
of the low-complexity WSF estimator, the eigendecomposition
of the rank D tridiagonal matrix is needed, which requires
O(D3) complex product operations. Thus, to estimate the
signal subspace matrix Ts of rank P ′, the computational cost
of the proposed method is only O(DMN+D2N+D3) flops.
However, the classical WSF estimator relies on the estimate
of the array covariance matrix and its eigendecomposition,
which require O(M2N + M3) flops. For the case where
D ≈ P ′ � min(M,N), the computational complexity of
the proposed method, i.e., O(DMN) flops, is much lower
than that of the classical WSF technique.

IV. NUMERICAL RESULTS

Example 1 Suppose there are three uncorrelated signals
with equal power in the far field impinging upon a ULA with
16 isotropic sensors, whose spacings equal half-wavelength.
The true DOAs are {−50, 00, 50}. The background noise is
assumed to be a stationary Gaussian white random process
with zero mean. Signal-to-noise ratio (SNR) is defined by
10 log(σ2

s/σ
2
n), where σ2

s is the power of each signal in
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single sensor. The results shown below are all based on 500
independent trials. The root-mean-squared errors (RMSE’s)
of estimated DOAs versus SNR are shown in Fig. 1. We
can observe from Fig. 1 that the new estimator yields the
comparable estimation accuracy with the WSF method when
SNR is greater than -5dB. The former slightly surpasses the
latter in estimation performance when SNR varies from -10dB
to -5dB. AS SNR becomes large, the two estimators achieve
the CRB.

Fig. 2 shows the RMSE’s of estimated DOAs versus the
number of snapshots in the case where SNR equals 5dB and
the rank of the MSWF is 5. From Fig. 2, it can be observed
that the estimation accuracy of the proposed method nearly
coincides with that of the WSF technique over the range of
the number of snapshots that we simulated.

Example 2 Consider the case where there are three
signals impinging upon the ULA from the same signal source.
The first is a direct-path signal and the others refer to the
scaled and delayed replicas of the first signal that represent the
multipaths or the ”smart” jammers. The propagation constants
are {1,−0.8 + j0.6,−0.4 + j0.7}. The true DOAs are also
assumed to be {−50, 00, 50}. The results shown below are all
based on 500 independent trials. The RMSE’s of estimated
DOAs versus SNR are shown in Fig. 3. It is easy to see from
Fig. 3 that the estimation performance of the proposed method
is identical to that of the WSF estimator when SNR>-5dB, and
the former outperforms the latter when SNR≤-5dB. As SNR
becomes high, the RMSE’s of the two methods approach to
the CRB.

For fixed SNR equal to 5dB and the rank of the MSWF
equal to 16, Fig. 4 indicates that the proposed method can
provide the same estimation accuracy as the WSF estimator
over the range of the number of snapshots that we simulated.

V. CONCLUSION

An low-complexity WSF method for DOA estimation
has been discussed in this paper. By choosing a specific
weighting matrix, the low-complexity WSF estimator yields
the comparable estimation performance with the classical WSF
technique. Unlike the classical WSF method, the proposed
method finds the signal subspace merely by calculating the
matched filters in the forward recursion of the MSWF, does
not require the estimate of the array covariance matrix or its
eigendecomposition. Thus, the proposed estimator is compu-
tationally efficient.

APPENDIX I
THE PROOF OF PROPOSITION 1

When P ′ = 1, namely the case of one signal, the
observation data reads as

x(1)
0 (k) = a(θ1)s1(k) + n(k). (34)

The matched filter h1 can be computed as

h1 =
a(θ1)σ2

s1

‖a(θ1)σ2
s1‖

=
a(θ1)

‖a(θ1)‖ . (35)

Therefore, the new observation data at the first stage of the
MSWF is given by

x(1)
1 (k) =

(
I − h1hH1

)
x(1)

0 (k)

=
(
I − a(θ1)aH(θ1)

‖a(θ1)‖2

)
[a(θ1)s1(k) + n(k)]

= B1n(k) (36)

=

(
1∏
i=1

Bi

)
n(k).

Suppose that (22) holds for P ′ = K, namely

x(K)
K (k) =

(
1∏

i=K

Bi

)
x(K)

0 (k) =

(
1∏

i=K

Bi

)
n(k). (37)

Then, when P ′ = K + 1, we have

x(K+1)
K+1 (k) =

(
1∏

i=K+1

Bi

)
x(K+1)

0 (k)

=

(
1∏

i=K+1

Bi

)[
x(K)

0 (k) + a(θK+1)sK+1(k)
]

= BK+1

(
1∏

i=K

Bi

)
x(K)

0 (k) (38)

+

(
1∏

i=K+1

Bi

)
a(θK+1)sK+1(k).

Considering the orthogonal property of the matched filters
hi, i ∈ {1, 2, · · · ,K + 1} leads to
(

1∏
i=K+1

Bi

)
a(θK+1)sK+1(k) =

[
1∏

i=K+1

(
I−hihHi

)]
a(θK+1)sK+1(k)

=

[
I−

K+1∑
i=1

hihHi

]
a(θK+1)sK+1(k) (39)

=
[
I−TK+1THK+1

]
a(θK+1)sK+1(k).

Notice that the orthogonal matched filters hi, i ∈
{1, 2, · · · ,K+1} are contained in the signal subspace, thereby
TK+1TH

K+1 is the projection matrix of the column space of
A(θ) = [a(θ1),a(θ2), · · · ,a(θK+1)]. It follows that

(
1∏

i=K+1

Bi

)
a(θK+1)sK+1(k) = 0. (40)

Thus, inserting (37) into (38) yields

x(K+1)
K+1 (k) =

(
1∏

i=K+1

Bi

)
n(k). (41)
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